skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fausnaugh, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Very few detections have been made of optical flashes contemporaneous with prompt high-energy emission from a gamma-ray burst (GRB). In this work, we present and analyze light curves of GRB-associated optical flashes and afterglows from the Transiting Exoplanet Survey Satellite (TESS). Our sample consists of eight GRBs with arcsecond-level localizations from the X-Ray Telescope on board the Neil Gehrels Swift Observatory (Swift). For each burst, we characterize the prompt optical emission and any observed afterglow, and constrain physical parameters for four of these bursts using their TESS light curves. This work also presents a straightforward method to correct for TESS's cosmic-ray mitigation strategy on 20 s timescales, which allows us to estimate the “true” brightness of optical flashes associated with prompt GRB emission. We also highlight TESS’s continuous wide-field monitoring capability, which provides an efficient means of identifying optical emission from GRBs and characterizing early time afterglow light curves. Based on empirical detection rates from Swift and the Fermi Gamma-ray Space Telescope, up to 10 GRBs per year may fall within the contemporaneous TESS field of view. 
    more » « less
  2. ABSTRACT Classical gamma-ray bursts (GRBs) have two distinct emission episodes: prompt emission from ultrarelativistic ejecta and afterglow from shocked circumstellar material. While both components are extremely luminous in known GRBs, a variety of scenarios predict the existence of luminous afterglow emission with little or no associated high-energy prompt emission. We present AT 2019pim, the first spectroscopically confirmed afterglow with no observed high-energy emission to be identified. Serendipitously discovered during follow-up observations of a gravitational-wave trigger and located in a contemporaneous TESS sector, it is hallmarked by a fast-rising ($$t \approx 2$$ h), luminous ($$M_{\rm UV,peak} \approx -24.4$$ mag) optical transient with accompanying luminous X-ray and radio emission. No gamma-ray emission consistent with the time and location of the transient was detected by Fermi-GBM or by Konus, placing constraining limits on an accompanying GRB. We investigate several independent observational aspects of the afterglow in the context of constraints on relativistic motion and find all of them are consistent with an initial Lorentz factor of $$\Gamma _0 \approx$$ 10–30 for the on-axis material, significantly lower than in any well-observed GRB and consistent with the theoretically predicted ‘dirty fireball’ scenario in which the high-energy prompt emission is stifled by pair production. However, we cannot rule out a structured jet model in which only the line-of-sight material was ejected at low-$$\Gamma$$, off-axis from a classical high-$$\Gamma$$ jet core, and an on-axis GRB with below-average gamma-ray efficiency also remains a possibility. This event represents a milestone in orphan afterglow searches, demonstrating that luminous optical afterglows lacking detected GRB counterparts can be identified and spectroscopically confirmed in real time. 
    more » « less
  3. Binaries containing a compact object orbiting a supermassive black hole are thought to be precursors of gravitational wave events, but their identification has been extremely challenging. Here, we report quasi-periodic variability in x-ray absorption, which we interpret as quasi-periodic outflows (QPOuts) from a previously low-luminosity active galactic nucleus after an outburst, likely caused by a stellar tidal disruption. We rule out several models based on observed properties and instead show using general relativistic magnetohydrodynamic simulations that QPOuts, separated by roughly 8.3 days, can be explained with an intermediate-mass black hole secondary on a mildly eccentric orbit at a mean distance of about 100 gravitational radii from the primary. Our work suggests that QPOuts could be a new way to identify intermediate/extreme-mass ratio binary candidates. 
    more » « less
  4. Abstract Young (<500 Myr) planets are critical to studying how planets form and evolve. Among these young planetary systems, multiplanet configurations are particularly useful, as they provide a means to control for variables within a system. Here, we report the discovery and characterization of a young planetary system, TOI-1224. We show that the planet host resides within a young population we denote as MELANGE-5. By employing a range of age-dating methods—isochrone fitting, lithium abundance analysis, gyrochronology, and Gaia excess variability—we estimate the age of MELANGE-5 to be 210 ± 27 Myr. MELANGE-5 is situated in close proximity to previously identified younger (80–110 Myr) associations, Crius 221 and Theia 424/Volans-Carina, motivating further work to map out the group boundaries. In addition to a planet candidate detected by the TESS pipeline and alerted as a TESS object of interest, TOI-1224 b, we identify a second planet, TOI-1224 c, using custom search tools optimized for young stars (NotchandLOCoR). We find that the planets are 2.10 ± 0.09Rand 2.88 ± 0.10Rand orbit their host star every 4.18 and 17.95 days, respectively. With their bright (K= 9.1 mag), small (R*= 0.44R), and cool (Teff= 3326 K) host star, these planets represent excellent candidates for atmospheric characterization with JWST. 
    more » « less
  5. Abstract Continuum reverberation mapping probes the size scale of the optical continuum-emitting region in active galactic nuclei (AGN). Through 3 yr of multiwavelength photometric monitoring in the optical with robotic observatories, we perform continuum reverberation mapping on Mrk 876. All wave bands show large-amplitude variability and are well correlated. Slow variations in the light curves broaden the cross-correlation function (CCF) significantly, requiring detrending in order to robustly recover interband lags. We measure consistent interband lags using three techniques (CCF, JAVELIN, and PyROA), with a lag of around 13 days fromutoz. These lags are longer than the expected radius of 12 days for the self-gravitating radius of the disk. The lags increase with wavelength roughly followingλ4/3, as would be expected from thin disk theory, but the lag normalization is approximately a factor of 3 longer than expected, as has also been observed in other AGN. The lag in theiband shows an excess that we attribute to variable Hαbroad-line emission. A flux–flux analysis shows a variable spectrum that followsfν∝λ−1/3, as expected for a disk, and an excess in theiband that also points to strong variable Hαemission in that band. 
    more » « less
  6. We present the analysis of the microlensing event OGLE-2015-BLG-0845, which was affected by both the microlensing parallax and xallarap effects. The former was detected via the simultaneous observations from the ground and Spitzer, and the latter was caused by the orbital motion of the source star in a relatively close binary. The combination of these two effects led to a mass measurement of the lens object, revealing a low-mass ($$0.14 \pm 0.05 \, \mathrm{ M}_{\odot }$$) M dwarf at the bulge distance ($$7.6 \pm 1.0$$ kpc). The source binary consists of a late F-type subgiant and a K-type dwarf of $$\sim 1.2$$ and $$\sim 0.9 \mathrm{ M}_{\odot }$$, respectively, and the orbital period is $$70 \pm 10$$ d. OGLE-2015-BLG-0845 is the first single-lens event in which the lens mass is measured via the binarity of the source. Given the abundance of binary systems as potential microlensing sources, the xallarap effect may not be a rare phenomenon. Our work thus highlights the application of the xallarap effect in the mass determination of microlenses, and the same method can be used to identify isolated dark lenses. 
    more » « less
  7. ABSTRACT We analyse high-cadence data from the Transiting Exoplanet Survey Satellite (TESS) of the ambiguous nuclear transient (ANT) ASASSN-18el. The optical changing-look phenomenon in ASASSN-18el has been argued to be due to either a drastic change in the accretion rate of the existing active galactic nucleus (AGN) or the result of a tidal disruption event (TDE). Throughout the TESS observations, short-time-scale stochastic variability is seen, consistent with an AGN. We are able to fit the TESS light curve with a damped-random-walk (DRW) model and recover a rest-frame variability amplitude of $$\hat{\sigma } = 0.93 \pm 0.02$$ mJy and a rest-frame time-scale of $$\tau _{DRW} = 20^{+15}_{-6}$$ d. We find that the estimated τDRW for ASASSN-18el is broadly consistent with an apparent relationship between the DRW time-scale and central supermassive black hole mass. The large-amplitude stochastic variability of ASASSN-18el, particularly during late stages of the flare, suggests that the origin of this ANT is likely due to extreme AGN activity rather than a TDE. 
    more » « less
  8. Abstract In the pursuit of understanding the population of stellar remnants within the Milky Way, we analyze the sample of ∼950 microlensing events observed by the Spitzer Space Telescope between 2014 and 2019. In this study we focus on a subsample of nine microlensing events, selected based on their long timescales, small microlensing parallaxes, and joint observations by the Gaia mission, to increase the probability that the chosen lenses are massive and the mass is measurable. Among the selected events we identify lensing black holes and neutron star candidates, with potential confirmation through forthcoming release of the Gaia time-series astrometry in 2026. Utilizing Bayesian analysis and Galactic models, along with the Gaia Data Release 3 proper-motion data, four good candidates for dark remnants were identified: OGLE-2016-BLG-0293, OGLE-2018-BLG-0483, OGLE-2018-BLG-0662, and OGLE-2015-BLG-0149, with lens masses of 3.0 1.3 + 1.8 M , 4.7 2.1 + 3.2 M , 3.15 0.64 + 0.66 M and 1.40 0.55 + 0.75 M , respectively. Notably, the first two candidates are expected to exhibit astrometric microlensing signals detectable by Gaia, offering the prospect of validating the lens masses. The methodologies developed in this work will be applied to the full Spitzer microlensing sample, populating and analyzing the timescale (tE) versus parallax (πE) diagram to derive constraints on the population of lenses in general and massive remnants in particular. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  9. Abstract Multipeaked supernovae with precursors, dramatic light-curve rebrightenings, and spectral transformation are rare, but are being discovered in increasing numbers by modern night-sky transient surveys like the Zwicky Transient Facility. Here, we present the observations and analysis of SN 2023aew, which showed a dramatic increase in brightness following an initial luminous (−17.4 mag) and long (∼100 days) unusual first peak (possibly precursor). SN 2023aew was classified as a Type IIb supernova during the first peak but changed its type to resemble a stripped-envelope supernova (SESN) after the marked rebrightening. We present comparisons of SN 2023aew’s spectral evolution with SESN subtypes and argue that it is similar to SNe Ibc during its main peak. P-Cygni Balmer lines are present during the first peak, but vanish during the second peak’s photospheric phase, before Hαresurfaces again during the nebular phase. The nebular lines ([Oi], [Caii], Mgi], Hα) exhibit a double-peaked structure that hints toward a clumpy or nonspherical ejecta. We analyze the second peak in the light curve of SN 2023aew and find it to be broader than that of normal SESNe as well as requiring a very high56Ni mass to power the peak luminosity. We discuss the possible origins of SN 2023aew including an eruption scenario where a part of the envelope is ejected during the first peak and also powers the second peak of the light curve through interaction of the SN with the circumstellar medium. 
    more » « less
  10. Abstract The mergers of binary compact objects such as neutron stars and black holes are of central interest to several areas of astrophysics, including as the progenitors of gamma-ray bursts (GRBs)1, sources of high-frequency gravitational waves (GWs)2and likely production sites for heavy-element nucleosynthesis by means of rapid neutron capture (ther-process)3. Here we present observations of the exceptionally bright GRB 230307A. We show that GRB 230307A belongs to the class of long-duration GRBs associated with compact object mergers4–6and contains a kilonova similar to AT2017gfo, associated with the GW merger GW170817 (refs. 7–12). We obtained James Webb Space Telescope (JWST) mid-infrared imaging and spectroscopy 29 and 61 days after the burst. The spectroscopy shows an emission line at 2.15 microns, which we interpret as tellurium (atomic massA = 130) and a very red source, emitting most of its light in the mid-infrared owing to the production of lanthanides. These observations demonstrate that nucleosynthesis in GRBs can creater-process elements across a broad atomic mass range and play a central role in heavy-element nucleosynthesis across the Universe. 
    more » « less